
Prior to the Gulf Council’s Scientific and Statistical Committee meeting in September 

2021, the Southeast Fishery Science Center (SEFSC) requested our group re-analyze the Red 

Snapper abundance estimates for Florida by re-incorporating the Random Forest model (RF) 

based on the sampling regime for that region. During the prior external review in March 2021, an 

independent team of experts recommended removing the RF model for Florida and analyzing the 

data based on a stratified random design. As a result, the estimate in the final report, provided to 

the Mississippi-Alabama Sea Grant Consortium in August 2021, stratified Florida by region and 

depth, resulting in an estimate of 118 million and 111 million Red Snapper (depending on 

calculation method). With the most recent request in September 2021 by the SEFSC, our team 

concluded that the Florida estimate should have included the RF model. To accommodate their 

request, we re-analyzed the data once again, resulting in an abundance estimate of 97 million and 

92 million Red Snapper. We have provided the methods for the abundance calculation and the 

results of the re-analysis in detail below.  
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The methodology below has been directly taken from the final report (pp. 81-87) and modified to 

include how the random forest model (RF) was incorporated in the re-analysis for Florida’s 

UCB/Natural bottom. For additional information, please refer to the full final report available at 

www.snappercount.org. 

C. Final Abundance Estimates 

Estimates of age-2+ Red Snapper abundance were produced by region, habitat type, and 

depth. Where appropriate, population estimates for artificial reefs were made for various 

categories representing the diversity of artificial structures. In all cases, population estimates 

were derived by expanded mean densities, with means and variances calculated assuming simple 

random sampling at the lowest strata level and assuming no error in the individual sample site 

estimates. Means and variances at higher levels of aggregation (region, total) were calculated 

following stratified sampling methods. Estimates were performed by two independent groups on 

the same data to provided cross validation. While the approaches, post-stratification, and 

application of statistical models differed and were not stipulated a priori, these separate analyses 

converged with very similar estimates. Overall, this most recent estimate (incorporating the RF 

model for Florida’s UCB/Natural bottom) of absolute abundance was 97 and 92 million age-2+ 

(percent standard error (PSE) 15%) during late 2019 (dependent on calculation method). While 

large numbers of fish occurred over well-known habitat features such as artificial reefs and 

natural hard bottom, we found that the previously uncharacterized bottom habitat (UCB) 

harbored the majority of Red Snapper. As a result of stratification, by region and depth for the 

dominant UCB habitat, the estimated PSE for the overall estimate is lower compared to the 

subcomponents. 

What follows is a detailed description of how the team arrived at our final estimate of 

absolute abundance (Table 1) of Red Snapper by region and habitat type.  

 

1. Abundance Estimates by Region and Habitat Type 

Due to the paucity of classified bottom habitat in the Gulf, the majority of habitat fell into the 

UCB category which was stratified by region and depth. UBC was stratified by state (TX, LA, 

AL/MS, FL) and depth (10-40 m, 40-100 m, 100-160 m). The FL strata was further subdivided 

into 3 regions (northwest, mid, south) and a RF model using 3 estimates of the likelihood of Red 

Snapper occurrence resulted in 27 strata used to determine the weights for the stratified estimates 

of mean density. For some locations (TX, LA, AL/MS) the areas of well-known large features of 

hardbottom were removed from the UCB estimates.  Where hardbottom habitat was mapped in 

detail, population estimates were made for the mapped area by region. Population estimates were 

also made for artificial structures and the subcategory of artificial structure pipelines. The overall 

population estimate was derived by summing over the individual categories. Estimated densities 

and numbers per sampled strata (habitat and depth) by region are presented in Table 1.   
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Uncharacterized bottom 

To estimate total population size and uncertainty for each stratum, observed numbers of 

Red Snapper per 100m2 within a stratum were treated as simple random samples and population 

estimates were calculated as the mean density times the number of 100m2 sampling units in each 

stratum. Mean density estimate were treated differently depending on the region and sampling 

method. 

In FL, strata were defined by region (northwest, mid, south), with the South region being 

established post hoc, depth and classification criteria from a RF model (see Siders manuscript, 

provided below). The RF model used fishery independent and dependent data to determine the 

probability of Red Snapper presence and categorized them as low, medium, and high.  This 

resulted in 27 strata. In two instances strata samples were not taken and mean and variances were 

borrowed from similar strata. These substitutions occurred in the Central region where the 

shallow depth low probability values were used for the mid depth low probability strata and the 

mid depth high probability values were used for the deep depth high probability strata. Density 

was estimated from randomly selected ROV point counts where 100% detection was observed at 

the most basic level (region, depth). Strata specific mean ( �̅�ℎ) and variance (𝑠ℎ
2) could be 

calculated following equations 1 and 2. The number of sampling units in a stratum (𝑁ℎ) relative 

to the total number of sampling units (𝑁) are used in the estimation of the stratified mean (�̅�) 

following equation 3 where K is the number of stratum and 
𝑁ℎ

𝑁
 is the stratum weight. The 

variance of the random stratified mean (𝑠�̅�
2) is a function of the stratum weight, the number of 

observations in a stratum (𝑛ℎ), the stratum variance, and the finite population correction and was 

calculated using equation 4. To estimate total population size (T), the random stratified mean is 

expanded by the total number of sampling units (𝑁). 

(1)�̅�ℎ = ∑
1

𝑛
𝑥𝑖

𝑛
𝑖=1   

(2) 𝑠𝑥ℎ
2 =

∑ (𝑥𝑖−�̅�ℎ)^2𝑛
𝑖=1

𝑛−1
 

(3) �̅� = ∑
𝑁ℎ

𝑁
�̅�ℎ

𝐾
ℎ=1   

(4) 𝑠�̅�
2 = ∑ [(

𝑁ℎ

𝑁
)

2

(1 −
𝑛ℎ

𝑁ℎ
)

𝑠ℎ
2

𝑛ℎ
]𝐾

ℎ=1   

In TX, for the 2 shallowest stratum, where acoustic counts were taken, the total number 

of fish encountered on a transect over the total area covered by the acoustic gear was used as the 

density estimate. Transect were post hoc stratified by region (South, Central, and North) to 

accommodate region specific estimates of the proportion of Red Snapper in an acoustic estimate 

of numbers of fish. Transects were assumed to be selected randomly within strata with mean and 

variance calculated following equations 1 and 2. To account for region specific estimates of the 

proportion of Red Snapper in a sample and the uncertainty associated with this estimate (Table 

1) the standard equation for the variance of the product of two independent variables was used. 

For each region the mean density of fish (�̅�ℎ) was multiplied by the mean proportion of Red 
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Snapper (�̅�ℎ) estimated to be in the sample from visual surveys. The resulting variance was 

calculated using equation 5.  

(5) 𝑠𝑥𝑦
2 = 𝑠𝑥ℎ

2 ∗ 𝑠𝑦ℎ
2 + 𝑠𝑥ℎ

2 ∗ �̅�ℎ + 𝑠𝑦ℎ
2 ∗ �̅�ℎ 

For the deepest TX stratum as well as UCB estimates for LA, estimates of the total 

number of snapper along a transect over the area surveyed from CBASS camera tows were used 

for density estimate. These estimates assumed 100% detection of Red Snapper within the area 

surveyed. Each transect was randomly selected and equations 1 and 2 were used to estimate the 

mean density and variance within a region. Due to the low number of transects in LA and 

MS/AL waters, density estimates were not made for each depth stratum. 

To estimate stratum specific population size (𝑇ℎ) mean density per 100m2 (�̅�ℎ ) was 

multiplied by the number of 100m2 units within a given stratum (equation 6) with the associated 

variance calculated using equation 7.  To estimate regional total population sizes as well as the 

overall Gulf of Mexico population over UCB, strata specific mean density and associated 

variances were combined using equations 3 and 4 with the stratum weight based on the area of 

each stratum (note for LA and MS/AL no depth stratification was used).  

(6) 𝑇ℎ = 𝑁ℎ ∗ �̅�ℎ 

(7) 𝑠𝑇ℎ

2  = 𝑁ℎ
2 ∗ 𝑠�̅�ℎ

2  

 

The resulting estimates of mean Red Snapper density and variance were for each region 

and depth stratum were combined into a single depth specific mean following equations 3 and 4 

for stratified sampling. 

Natural Hard Bottom  

Population estimates for natural hard bottom were calculated as expanded mean densities 

assuming the data were collected from a simple random sample. Mean and variances were 

calculated using equations 1 and 2 and expanded to the mapped area of hard bottom for TX, LA, 

and AL/MS using equations 6 and 7. For LA, samples from TX were substituted.  

Artificial structures 

Artificial structures in TX were categorized as small and extra-large. In the small 

category, it was assumed that 3.25 pyramids comprised a small structure given the nature of the 

sampling conducted. Structures were also categorized by depth strata. Within each category 

simple random sampling was conducted and mean numbers and associated variance per structure 

were estimated using equations 1 and 2 from total fish counts converted to Red Snapper numbers 

from site specific estimates of the proportion of red snapper. For each site, the proportion Red 

Snapper was assumed know without error. Total population estimates were calculated from 

expanded mean numbers per structure expanded by the assumed known number of structures 

(equation 6). To estimate total number per artificial structure category, mean density per 

structure was calculated using depth strata following equations 3 and 4 with total numbers 



 

5 

 

estimated from expanded mean numbers per structure tie the assumed know number of 

structures.  

Population estimates for LA were estimated from data for TX. All structures in Louisiana were 

assumed to be extra-large and the number of structures was assumed known without error. Depth 

specific TX data was substituted to estimate depth specific mean densities and calculations for 

each stratum and the combined estimates were calculated similar to the TX data. 

For AL the number of artificial structures per depth strata was estimated (see detail in the 

methods section). As a result, for each depth strata the total variance in the estimate was 

calculated by combining the variance in the estimated mean numbers per structure times the 

estimate of the variance in the number of structures (equation 5). Within each category (depth 

and authorization zone) simple random sampling was conducted and the mean and variance in 

numbers per structure were calculated using equations 1 and 2. Samples were stratified by 

authorization zone category to obtain estimated numbers in a given depth category. Means and 

variances were calculated using equations 3 and 4. Total numbers were estimated from expanded 

mean numbers per structure and the estimated number of structures (see methods for greater 

detail). For MS, estimates of number per structure were calculated from simple random samples 

and expanded assuming the number of structures was known without error.   

No difference in mean densities and variance were apparent for structures in FL and all samples 

were combined to get a single mean number per structure assuming simple random sampling 

(equations 1 and 2). The number of artificial structures by depth was assumed known without 

error and total population estimated by depth and region were estimated as expanded mean 

numbers (equation 6 and 7).   

Pipelines 

The population estimate of Red Snapper on pipelines was estimated from an expanded mean 

densities per meter of pipeline times the total extent of pipeline in the Gulf, calculated from 

georeferenced polyline data of operational pipeline from the BOEM (Bureau of Safety and 

Environmental Enforcement, Office of Technical Data Management, Data Administration Unit 

2020-12-01, Pipelines vector digital data). Red Snapper density per meter of pipeline was 

estimated from total video counts per transect, assuming 100% detection of Red Snapper, over 

the length of pipeline surveyed. Mean density and the associated variance were calculated 

assuming transects were selected at random out of the available pipeline units in the BOEM 

database. 
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Table 1.  Re-analysis of the Florida natural/unconsolidated bottom-type data to include the random forest design stratification, 

resulting in a decrease of approximately 21 million fish from the previous estimate of 118 million Red Snapper. 

  

State/Region Habitat Type
Total Area (km

2
) 

or Structures

Number of 

Samples (n)

Area Sampled 

(km
2
)

Mean Density (100m
2
) 

or by Structure
Number SE CV (%)

Natural 1,570 36 6.13 0.45 7,037,443 2,537,014 36

Artificial 4,348 49 417,761 88,469 21

  Large 941 45 362 340,905 79,287 23

  Small 3,460 4 22 76,855 39,246 51

Uncharacterized Bottom 57,535 140 6.26 0.03 14,569,830 6,663,776 46

Total 225 22,025,035 7,130,931 32

Natural 821 22 n/a 0.47 3,852,652 1,671,470 43

Artificial 1,771 42 2174 3,849,325 576,234 15

Uncharacterized Bottom 53,052 87 3.61 0.02 9,729,387 5,699,448 59

Total 151 17,431,364 5,967,375 34

Natural 211 32 0.013 1.78 3,751,988 752,467 20

Artificial 9,410 128 160 1,509,625 167,506 11

Uncharacterized Bottom 18,500 3 0.74 0.02 3,199,472 1,625,263 51

Total 163 8,461,085 1,798,817 21

Natural & Uncharacterized 143,538 748 0.61 0.03 48,124,414 10,437,839 22

Artificial 7,763 79 16 127,560 21,088 17

Total 832 48,251,974 10,437,861 22

Pipelines (Gulf-wide) 26,686 linear km 27 0.49 0.02 507,661 218,961 43

Gulf of Mexico 96,677,119 13,969,084 14

TX

LA

AL&MS

FL
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2. Validation Analysis for Abundance Estimate 

We performed a separate independent analysis to validate our primary estimate of absolute 

abundance on the same data set to provide validation. The results of this secondary analysis are 

shown in Table 2. While the approaches, post-stratification, and application of statistical 

methods differed somewhat and were not stipulated a priori, these independent analyses 

produced similar estimates (i.e., within 4.7%; 4.6 million Red Snapper difference from each 

estimate).  

While these two analyses were performed independently using the same data, guidance was not 

given in terms of a preferred statistical approach, post-stratification, and various other small 

nuances regarding how these data were treated. Total abundance estimates were made for 4 

regions: Texas, Louisiana, Alabama/Mississippi, and Florida. The primary abundance estimation 

method for artificial reefs and pipelines is based on a model in which expected abundance in 

each site is assumed proportional to its area for all sites in the stratum (i.e., it used the average of 

ratio estimator).  The validation method presented here used the standard ratio estimator for 

abundance, which does not require adherence to a model for consistency. Only small differences 

in the estimates from the two methods were observed, so the implicit model assumption for the 

primary estimation method was deemed adequate. Within each region, total abundance was 

estimated by habitat: artificial reefs (ART), natural banks (NAT), and uncharacterized bottoms 

(UCB). This section details the different methods used for estimating Red Snapper abundance, 

data pre-processing, and the mathematical expressions for the different estimators used for 

estimating total abundance in the various Red Snapper habitats. The rest of the analytical 

description is organized as follows: the different estimators used to estimate Red Snapper 

abundance in the different regions/habitats are defined, and the resulting total abundance 

estimates for each of the regions and habitats as well as their associated estimators are 

summarized. 
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Estimators 

Within each stratum and post-stratum, a separate estimate of total Red Snapper Abundance was 

made. Then the estimates of total abundance were summed to achieve a Gulf-wide estimate of 

abundance. In each stratum or post-stratum, either a Mean-per-unit estimator (if sampling units 

were the same size or there was no size measure beyond a classification, as for artificial reefs) or 

a Ratio estimator (if sampling units varied in size, such as varying size transects) was used.  

Mean per-unit (�̂�𝒚,𝒎𝒑𝒖) 

In strata in which the sampling unit was artificial structure or grid with fixed size, total 

abundance was estimated by multiplying the number of artificial structures or grids in the 

population by the average Red Snapper count per structure or grid (mean per-unit). Let 𝑁ℎ 

denote the number of units in the stratum h universe (e.g., number of large structures in a region) 

and 𝑛ℎ denote the number sampled, and let 𝑦ℎ𝑖 denote the abundance of Red Snapper observed 

(or estimated) in the ith sampled unit of the hth stratum. Then, the total abundance estimate for the 

stratum is given by:  

 (24) �̂�ℎ𝑦,𝑚𝑝𝑢 = 𝑁ℎ × �̅�ℎ,            

where  �̅�ℎ = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (𝑜𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) 𝑝𝑒𝑟 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑜𝑟 𝑔𝑟𝑖𝑑 (�̅�ℎ =

∑ 𝑦ℎ𝑖
𝑛
𝑖=1

𝑛
).  

The variance of the MPU estimator for the hth stratum (Eqn. 24) was estimated as 

(25) 𝑣(�̂�ℎ𝑦,𝑚𝑝𝑢) = 𝑁ℎ
2 × (𝑠ℎ

2 𝑛ℎ) (1 −
𝑛ℎ

𝑁ℎ
) .⁄  

Ratio Estimator (�̂�𝒚,𝒓) 

In strata in which the sampling units were areal and varied in size (e.g., transects), total 

abundance was estimated with a standard ratio estimator. Let 𝑥ℎ𝑖 denote the area of the ith 

sampled unit of the hth stratum and let 𝑡ℎ𝑥 denote the total area of the stratum. Then, the total 

abundance estimate for the stratum is given by:  

(26) �̂�ℎ𝑦,𝑟 = 𝑡ℎ𝑥 ×
∑ 𝑦ℎ𝑖

𝑛ℎ
𝑖=1

∑ 𝑥ℎ𝑖
𝑛
𝑖=1

= 𝑡ℎ𝑥 × �̂�.                                                

The variance of the ratio estimator for the hth stratum (Eqn. 26) was estimated using the Taylor 

Series approximate variance: 

(27)  𝑣(�̂�ℎ𝑦,𝑟) = 𝑡ℎ𝑥
2 × (𝑠𝑑

2 𝑛ℎ) (1 −
𝑛ℎ

�̂�ℎ
) ,⁄                                            

where 𝑠𝑑
2 is the sample variance of the residuals 𝑑ℎ𝑖 = 𝑦ℎ𝑖 − �̂�𝑥ℎ𝑖 and the estimated number of 

transects in the population is �̂�ℎ = 𝑡ℎ𝑥 �̅�ℎ,⁄  where �̅�ℎ is the average area of the sampled units. 
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Pyramid Structure strata (�̂�𝒚,𝒓(𝒑𝒚𝒓)) 

Artificial structures in TX were classified into two strata, pyramid-like and non-pyramid, 

because structures are typically large artificial reef (e.g., oil and gas platforms) or smaller 

artificial reef pyramids (e.g., small discrete structures). These two types required different 

approaches for estimating abundance. Though abundance of Red Snapper on large structures in 

Texas were estimated with the mean-per-unit estimator shown in (24), the total abundance on the 

pyramid structures was estimated by a ratio estimator, as shown in (26). The regions where the 

pyramids appear was gridded into equal size grid cells. Then a sample of 𝑛ℎ grids cell was 

selected. However, rather than using the area as the auxiliary variable, the number of pyramids in 

each grid cell was used. That is, 𝑥ℎ𝑖 =  the number of pyramids in grid unit i in the stratum and 

the total number of pyramids in the stratum is denoted by 𝑡ℎ𝑥. Then total abundance was 

estimated using the ratio estimator as in (26). Note though that the density estimate  �̂�ℎ, is now 

the density of Red Snapper per pyramid in the sampled grids. The variance of this estimator is as 

shown in (27). 

Substitution (�̂�𝒚,𝒔𝒖𝒃) 

In regions in which samples were not available or missing, total abundance was estimated by 

substituting the missing samples with samples from similar/nearby areas. The total abundance 

estimate is: 

�̂�ℎ𝑦,𝑠𝑢𝑏 = 𝑡ℎ𝑥 × �̂�ℎ,𝑠𝑢𝑏 

where  �̂�ℎ,𝑠𝑢𝑏 is the abundance density for the area where sample is available (the substitute 

area). 

Alabama/Mississippi Estimates 

The one exception to the method just described was for Alabama/Mississippi estimates. The 

AL/MS team produced estimates and their standard errors directly, which are reported in Section 

Error! Reference source not found. (Alabama/Mississippi Region). The validation estimation 

team incorporated their estimates into the Gulf-wide total Red Snapper estimate and its variance, 

using the method we describe subsequently. 

 

Adjustment for calibration variance 

The estimated variance expressions in (25) and (27) do not account for uncertainty in the 

measurement of RS abundance 𝑦ℎ𝑖. The so-called “observed” values of Red Snapper count in 

expressions (24) – (26) are in some cases approximated rather than directly observed. One 

method for approximating Red Snapper was as a fraction of total fish abundance, which was 

directly observable by using visual sampling methods (e.g., ROV or TCA). This fraction, called 

a calibration factor, was itself estimated from experimental data in which fish and Red Snapper 

abundance could both be measured accurately in a sample of transects. From these data, a 

proportion of Red Snapper was noted for each of a sample of transects. Then the proportions 
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were averaged to obtain the calibration factor for a specific region. This calibration factor was 

then multiplied by total fish observed in transects in which the counting technology does not 

allow species identification, thereby producing an approximate value of Red Snapper counted for 

the transect. This is the method that was used for the Mid and Shallow depths of the UCB 

stratum in Texas. A separate calibration factor was estimated by region (Central, North, and 

South), defining post-strata.  

Calibration adds variability to the final estimate beyond what is shown in (25) and (27). To see 

how much, we must examine the expression for the estimator and calculate an estimate of its 

variance. Let 𝑢ℎ𝑖 denote the fish abundance in post-stratum h and transect i and �̂�ℎ denote the 

calibration factor for post-stratum h, and �̂�ℎ𝑖 = �̂�ℎ𝑢ℎ𝑖 denote the calibrated measure of Red 

Snapper abundance in transect i. Then the calibrated ratio estimator of Red Snapper in the UCB 

post-strata, is 

(28) �̂�ℎ𝑦,𝑟 = 𝑡ℎ𝑥 ×
∑ 𝑝ℎ𝑢ℎ𝑖

𝑛ℎ
𝑖=1

∑ 𝑥ℎ𝑖
𝑛
𝑖=1

= 𝑡ℎ𝑥

∑ 𝑢ℎ𝑖
𝑛ℎ
𝑖=1

∑ 𝑥ℎ𝑖
𝑛
𝑖=1

× �̂�ℎ =  �̂�ℎ𝑢,𝑟 × �̂�ℎ.                                   

From (28) we see that the calibrated estimator can be written as a product of two random 

variables, one in the form of the original estimator (except it is an estimate of total fish 

abundance rather than Red Snapper abundance) and the calibration factor. Since the calibration 

data was independently collected from the fish abundance data, the two terms of the product are 

independent. The variance for a product of two independent estimators  that are both 

approximately unbiased (so that 𝐸(�̂�ℎ𝑢,𝑟) ≈ 𝑡ℎ𝑢 and 𝐸(�̂�ℎ) ≈ 𝑝ℎ, the true calibration factor, if it 

could be observed) can be estimated (Goodman 1962) as  

(29) 𝑣(�̂�ℎ𝑦,𝑟) = 𝑉(�̂�ℎ𝑢,𝑟�̂�ℎ) = �̂�ℎ
2𝑉(�̂�ℎ𝑢,𝑟) + 𝑉(�̂�ℎ)[�̂�ℎ𝑢,𝑟

2 − 𝑉(�̂�ℎ𝑢,𝑟))]. 

Since �̂�ℎ𝑦 = �̂�ℎ�̂�ℎ𝑢,𝑟 , 𝑡he first term of (29) can be thought of as an estimate of the variance of the 

uncalibrated estimator in (28). The second term of (29) is therefore an estimate of the increase in 

variance due to calibration. When the calibration factor is a sample mean (of proportions) as it is 

in this case, then 𝑣(�̂�ℎ) = 𝑠ℎ𝑝
2 𝑚⁄ , where 𝑠ℎ𝑝

2  is the sample variance of the calibration proportions 

and m is their sample size. This is the method we used to determine the SE’s for the estimates of 

total Red Snapper in Table 7 for the Mid and Shallow UCB strata. (This method was not used for 

the Deep UCB stratum because calibration was not used, but rather direct counts of Red Snapper 

were used for estimation where the CBASS gear was used). 

Note that the AL/MS estimation team incorporated an adjustment for the uncertainty in the 

number of artificial reefs in their state, as was described in Section Error! Reference source not 

found. (Alabama/Mississippi Region). Since the number of artificial reefs was unknown, the 

expression in (24) also required a product of two random variables for their estimator. As a 

result, they also used the variance estimate shown in (29), as shown in Section Error! Reference 

source not found..  

Besides the Texas UCB, approximation of Red Snapper count in transects of the natural habitats 

and artificial reefs in Texas also used calibration methods. The analytical methods needed for 

this calibration are most likely not possible with the current data and analytical methods 
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available. Thus, no additional variance estimate for this calibration factor was calculated. As a 

result, we cannot directly assess the effect on the standard error and CV of the estimates of Red 

Snapper abundance in these strata. Nevertheless, to understand the impact that this calibration 

might have on the uncertainty of Red Snapper abundance in Texas and the Gulf as a whole, we 

undertook a conservative “worst case scenario” approach to examine this issue. We estimated the 

multiplicative increase in variance of Red Snapper abundance due to calibration for each of the 

post-strata of the UCB in Texas. This quantity, known as design effect or efficiency when 

comparing sample designs or estimators, ranged from a low of 1.01 (Central region, mid depth of 

Texas UCB) to a high of 2.77 (South region, mid depth of Texas UCB). The latter value means 

that the variance of the estimator of Red Snapper abundance in that post-stratum is 2.77 times 

larger than it would have been if Red Snapper count could have been observed directly, or 

without uncertainty due to calibration. To examine the impact that calibration might have in the 

other strata of Texas that used it, we multiplied each variance estimate by 2.77, to determine a 

“worst-case scenario” for the effect of calibration on variance. Then these conservative estimates 

of variance were used to determine a CV for Texas, and for its impact on the estimate of total for 

the Gulf. Our findings, as shown in the last column of Table 7, are that the estimated CV of Red 

Snapper abundance for Texas increased from 22% to 25% by applying this factor to all the 

additional strata of Texas that used calibration. Since LA also used Texas data, we carried out 

this exercise for LA Red Snapper abundance estimate as well. The CV of Red Snapper 

abundance in Louisiana increased from 23% to 39% by applying the factor to all its strata, also 

shown in Table 2. 

 

Total Abundance Estimates 

To obtain estimates of total abundance for state areas and Gulf-wide, the estimates in the strata 

and post-strata (which we refer to collectively as sub-areas) making up those areas were added. 

The estimated variance of the aggregated estimate was calculated as the sum of the variances for 

the component sub-areas, and its standard error was estimated as the square root of the 

aggregate. That is, if we denote the set of sub-areas using MPU estimators as 𝐻𝑚𝑝𝑢 and the set of 

sub-areas using ratio estimators as 𝐻𝑟, then we can represent the estimator of abundance for any 

aggregated area A made of entire sub-areas and its standard error as 

 

�̂�𝐴 = ∑ �̂�ℎ,𝑚𝑝𝑢

ℎ∈(𝐴∩𝐻𝑚𝑝𝑢)

+ ∑ �̂�ℎ,𝑟

ℎ∈(𝐴∩𝐻𝑟)

 

and  

𝑆𝐸(�̂�𝐴) = √∑ 𝑣(�̂�ℎ,𝑚𝑝𝑢ℎ∈(𝐴∩𝐻𝑚𝑝𝑢) ) + ∑ 𝑣(�̂�ℎ,𝑟)ℎ∈(𝐴∩𝐻𝑟)  . 
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The results of this validation estimation process are shown in Table 2 for various aggregation 

levels, from individual strata to regions to Gulf-wide estimates. It also includes sample sizes and 

estimates for individual strata, standard errors of the estimates, their coefficient of variation 

(standard error divided by the estimated abundance), and a conservative (worst-case) CV, based 

on assuming a large value (2.77) for the design effect for Red Snapper abundance estimates 

based on calibration. (We do not combine LA and the rest of the Gulf since LA re-uses data from 

Texas in its estimate. Thus, combining variances as shown in (30) misrepresents the combined 

uncertainty.) 
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Table 2. Re-analysis of the Florida natural/unconsolidated bottom-type data to include the 

random forest design stratification, resulting in a decrease of approximately 19 million fish from 

the previous estimate of 111 million Red Snapper. This estimate was provided as a separate 

“validation estimate” in which the same data as provided above was analyzed by an independent 

group to ensure accuracy in estimate calculations.  

 

State/Region Habitat Type
Area (km

2
) or 

Structures

Number of 

Samples (n )
Area Sampled (km

2
)

Mean Density (100m
2
) 

or by Structure
Number SE CV (%)

Conservative 

CV(%)
Estimator

Natural 1,570 36 6.13 5,218,915 1,390,733 27 44

  Deep 209 11 0.09 178,682 70,111 39 65

  Mid 953 22 0.35 3,381,753 955,545 28 47

  Shallow 409 3 0.41 1,658,480 1,008,046 61 101

Artificial 12,010 31 706,327 191,728 27 45

  Pyramids 10,902 13 11 125,300 80,777 64 107

  Non-Pyramids 1,108 18 524 581,027 173,881 30 50

Uncharacterized Bottom 57,535 140 6.22 10,332,018 3,449,733 33 33

  Deep 4,034 4 1.35 0.002 71,460 38,584 54 90

  Mid-North 8,765 39 1.75 0.015 747,705 512,361 69 N/A

  Mid-Central 6,450 22 1.05 0.033 2,159,374 2,014,526 93 N/A

  Mid-South 6,503 16 0.92 0.005 340,824 205,910 60 N/A

  Shallow- North 17,036 36 0.51 0.014 2,335,968 1,426,726 61 N/A

  Shallow- Central 8,951 15 0.38 0.038 3,367,881 2,183,282 65 N/A

  Shallow- South 5,797 8 0.25 0.023 1,308,806 856,547 65 N/A

Total 198 16,257,260 3,724,454 23 26

Natural 821 22 N/A 3,683,745 958,570 26 43

  Deep 105 6 0.14 151,361 51,731 34 57

  Mid & Shallow 716 16 0.49 3,532,384 957,173 27 45

Artificial 1,771 42 3,849,325 1,341,617 35 58

  Deep 93 7 710 66,046 38,272 58 96

  Mid 602 29 1,399 842,219 363,261 43 72

  Shallow 1,076 6 2,733 2,941,060    1,290,935 44 73

Uncharacterized Bottom 53,052 65 2.42 11,043,973 4,024,820 36 61

  Deep 5,348 3 0.68 0.01 406,320 387,513 95 159

  Mid 19,077 11 0.85 0.02 3,756,598 2,715,533 72 120

  Shallow 28,627 51 0.89 0.02 6,881,055 2,945,317 43 71

Total 129 18,577,043 4,349,479 23 39

Natural 211 32 0.01 1.78 3,751,988 752,467 20 N/A

Artificial 9,410 128 160 1,509,625 167,506 11 N/A

Uncharacterized Bottom 18,500 3 0.74 0.02 4,425,687 1,730,961 39 N/A

Total 163 9,687,300 1,894,859 20 N/A

Natural & Uncharacterized 143,538 748 0.61 46,921,038 10,300,890 37 N/A

Red Snapper low probability 92,616 14,653,325 5,462,227 N/A

  NW Region- Deep 1,557 13 0.009 0.000 0 N/A

  NW Region- Mid 1,148 17 0.014 0.007 81,238 82,058 101 N/A

  NW Region- Shallow 2,009 23 0.024 0.000 0 N/A

  Mid Region- Deep 3,295 2 0.001 0.000 0 0 N/A

  Mid Region-Mid 3,013 0 - - 0 N/A

  Mid Region- Shallow 19,460 77 0.052 0.271 5,265,679 2,616,464 50 N/A

  Southern Region- Deep 9,871 15 0.010 0.000 0 0 N/A

  Southern Region- Mid 18,358 13 0.013 0.315 5,786,192 3,859,150 67 N/A

  Southern Region- Shallow 33,905 53 0.048 0.104 3,520,216 2,844,339 81 N/A

Red Snapper probable 28,065 15,454,698 5,838,704 N/A

  NW Region- Deep 98 7 0.005 0.211 20,614 20,410 99 N/A

  NW Region- Mid 693 7 0.006 0.000 0 N/A

  NW Region- Shallow 1,145 11 0.008 1.847 2,115,089 2,118,505 100 N/A

  Mid Region- Deep 419 2 0.001 0.000 0 0 N/A

  Mid Region-Mid 4,026 10 0.009 1.057 4,256,027 3,042,427 71 N/A

  Mid Region- Shallow 8,030 138 0.107 1.021 8,199,695 4,479,071 55 N/A

  Southern Region- Deep 1,928 6 0.004 0.000 0 0 N/A

  Southern Region- Mid 9,383 10 0.016 0.000 0 N/A

  Southern Region- Shallow 2,343 49 0.038 0.368 863,273 532,486 62 N/A

Red Snapper high probability 22,858 16,813,015 6,494,764 N/A

  NW Region- Deep 8 6 0.004 0.000 0 N/A

  NW Region- Mid 220 5 0.004 0.000 0 N/A

  NW Region- Shallow 399 18 0.016 0.635 253,470 227,876 90 N/A

  Mid Region- Deep 45 0 - - 0 0 N/A

  Mid Region-Mid 5,074 10 0.011 1.418 7,195,848 5,984,849 N/A

  Mid Region- Shallow 6,487 210 0.174 1.424 9,236,065 2,510,522 27 N/A

  Southern Region- Deep 390 4 0.003 0.000 0 0 N/A

  Southern Region- Mid 9,301 14 0.014 0.000 0 N/A

  Southern Region- Shallow 932 28 0.022 0.137        127,631 94,323 74 N/A

Artificial 7,763 84 16         123,377 20,125 16 N/A

Total 832 47,044,415 10,300,910 22 N/A

Pipelines (Gulf-wide) 26,686 linear km 27 0.49 0.021 546,988 358,761 64 N/A

Gulf of Mexico 92,113,006

TX, MS, AL, FL 73,535,963 13,942,031 15 15

Louisiana* 18,577,043 4,349,479 23 39

TX

LA

AL/MS

FL
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GULF OF MEXICO RED SNAPPER 
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METHODS 

Data Integration 

We collated 14 presence-absence datasets in the Gulf of Mexico (Table 

1)(Figure 1). These broke down by gear into the following categories: 1) camera collected 

presences (three datasets), 2) vertical line (five datasets), 3) bottom longline (four datasets), 4) 

bottom trawl (one dataset), and 5) mixed (one dataset). All but two of the 14 datasets were 

collected using fishery independent surveys with the remainder collected by observers onboard 

commercial vessels through the NOAA NMFS National Observer Program. One dataset was 

accessed from the Global Biodiversity Information Facility (GBIF), which is collated from 

various sources including museum collections and citizen scientists. 

 

Environmental Covariates 

We compiled nine environmental covariates: bathymetry (seafloor depth) (Figure 

2), distance to shore (Figure 3), distance to submersed aquatic vegetation (SAV) (e.g. 

seagrass) (Figure 4), distance to hardbottom (rock substrate)(Figure 5), distance to oil 

and natural gas pipelines (Figure 6), distance to artificial structures (Figure 7), bottom 

temperature (Figure 9), bottom salinity (Figure 10), and the catch-per-unit effort (CPUE) 

estimated for the vertical line commercial fishery by vessel monitoring systems 

(Ducharme-Barth & Ahrens, 2017)(Figure 10). Details on the processing of each 

variable are provided below and each variable was projected to a 3 x 3 arc-second 

(roughly 90 x 90 m) grid from roughly 98 – 78°W and 23 – 31°N on a GRS80 ellipsoid 

with a NAD83 datum, we refer to this grid as the spatial frame hereafter. We chose this 

resolution as a compromise of computational resource use (the grid has 230,400,000 

cells), the size of most artificial structures in the Gulf of Mexico, and the approximate 

area reasonably surveyed by visual census (Patterson pers. comm.). 

Seafloor bathymetry was cropped from the STRM30+ (Version 6) digital elevation 

model distributed from the Gulf of Mexico Coastal Observing System 

(http://gcoos.org/products/topography/SRTM30PLUS.html) at a 30 arc-second 

resolution. Distance to shore was interpolated for the spatial frame by determining the 

minimum Euclidean distance for a given grid cell centroid to the shoreline extracted at 

an intermediate resolution (Level 1) from the Global Self-consistent, Hierarchical, 

Highresolution Geography Database 

(https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/latest/). Distance to SAV was 

determined as the minimum Euclidean distance for a given grid cell centroid to the edge 

of any spatial polygon from the Gulfwide Submersed Aquatic Vegetation database 

(https://gis.ngdc.noaa.gov/arcgis/rest/services/GulfDataAtlas/SAV_Gulfwide/MapServer) 

. Distance to hardbottom was determined as the minimum Euclidean distance for a 

given grid cell centroid to the edge of any spatial polygon of the rock sediment layer 

extracted from the dbSEABED database 
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(http://instaar.colorado.edu/~jenkinsc/dbseabed/). Distance to oil and natural gas 

pipelines was determined by extracting the Bureau of Ocean Energy Management’s 

(BOEM) Gulf of Mexico Outer Continental Shelf oil and natural gas pipeline dataset 

(https://www.data.boem.gov/Main/HtmlPage.aspx?page=gomrpipelines) and subsetting 

to the existing pipelines (removing those that had been removed or proposed). The 

minimum Euclidean distance between a grid cell centroid and oil and natural gas 

pipelines was determined. 

Distance to artificial structure was determined by first compiling four databases 

on artificial structures in the Gulf of Mexico and classifying the individual structures into 

small, medium, large, and extra-large artificial structures: 1) National Oceanographic 

and Atmospheric Administration (NOAA) Office of Costal Management’s Artificial Reef 

database (AR) (ftp://ftp.coast.noaa.gov/pub/MSP/ArtificialReefs.zip); 2) NOAA Office of 

Coast Survey’s Automated Wreck and Obstruction Information System (AWOIS) 

(https://nauticalcharts.noaa.gov/data/wrecks-and-obstructions.html); 3) BOEM’s Outer 

Continental Shelf Oil and Natural Gas Platforms – Gulf of Mexico Region dataset 

(ONGP)(https://data.doi.gov/dataset/outer-continental-shelf-oil-and-natural-gas-platforms-gulf-

of-mexico-region-nad-27); and 4) Steinhatchee Fisheries Management Area Artificial Reefs 

database (SFMAAR). Briefly, the NOAA AR database was parsed by the reef designation into 

groups (small designed ARs by design type, Ships and ship-like Objects, Sherman WWII Tanks, 

Convair F-106 Delta Dart Airplanes, Oil and Gas Platforms, Boxcars, Automobiles, Culverts, 

Bridges, Miscellaneous concrete, and Tires) and using provided weight, weight proxies, or 

imputation were classified into one of the four artificial structure classes. Vessels that were 

cross-listed in the NOAA AR and the NOAA AWOIS databases were removed from the latter. 

Additionally, several oil and natural gas platforms had been converted into artificial reefs under 

the Bureau of Safety and Environmental Enforcement’s Rigs to Reefs program 

(https://www.bsee.gov/what-we-do/environmental-focuses/rigs-to-reefs) and were removed from 

the BOEM’s ONGP dataset. For artificial structures in the NOAA AWOIS and BOEM ONGP 

databases, the artificial structure class was assumed to be large. Artificial structure locations 

were provided confidentially for the “fisheries conservation reefs” in the Steinhatchee 

Fisheries Management Area in the Big Bend area of Florida (Lindberg, pers. comm.). 

Reefs were assumed to be consistent with the “Lindberg” reef type in the NOAA AR 

database and belong to the small artificial structure class. 

Bottom temperature and salinity were derived from the HYbrid Coordinate Ocean 

Model (HYCOM) experiment 31.0 and 32.5 (https://www.hycom.org/dataserver/gom-analysis) 

for the Gulf of Mexico (representing model predictions from 2009 to 2017). 

The average across all years was taken, masked to the study region, and depth-matched to the 

benthos using the STRM30+ bathymetry dataset. The raster (Hijmans, 

2018), rgeos (Bivand & Rundel, 2018), rgdal (Bivand, Keitt & Rowlingson, 2018), and 

maptools (Bivand & Lewin-Koh, 2018) packages were used to read, extract, and 

process the various spatial datasets, the spatstat (Baddeley, Rubak & Turner, 2015) 

package was used for fast Euclidean distance calculations, as well as the doParallel 

(Microsoft Corporation & Weston, 2018) and foreach (Microsoft & Weston, 2017) 

packages were used for parallelization in program R (R Core Team 2018). 

 

Random Forest 

Random Forest is a supervised machine-learning algorithm based on 
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classification / decision trees in which classified data is passed through the tree and 

covariates are used to separate the data into classified groups (Breiman, 2001). In the 

composite Red Snapper occurrence dataset, samples (location where a gear was 

deployed or sighting occurred) with an occurrence are dummy-coded as 1’s and those 

without are dummy-coded as 0’s. Categorical and continuous covariates are then used 

(cutoffs applied to continuous datasets) to make decisions at every node in individual 

classification trees to attempt to best separate the occurrence classes (0’s and 1’s). A 

random subset of data is provided for each tree (the in-the-bag dataset) and a random 

subset of covariates are tried at each node in each tree. Each classification tree votes 

on whether a datum’s class (0’s and 1’s) and the proportion of trees that votes correctly 

equal the probability of an occurrence occurring at that sample locale. 

Implementation 

The base Random Forest procedure, implemented using the randomForest 

package in R (Liaw & Wiener, 2002), was modified to incorporate modeling uncertainty 

into the final estimates called Ensemble Random Forest (Siders et al. in prep). The 

procedure is roughly equivalent to a k-folds crossvalidation procedure where the 

composite Red Snapper occurrence dataset is divided into k training–test subdatasets. 

For each subdataset, a Random Forest is trained and its performance evaluated on the 

test dataset. From this ensemble of random forests, the distribution of model 

performance metrics and a distribution of model predictions can be determined. In the 

former, the mean performance across models in the ensemble is calculated. In the 

latter, the model predictions are used to generate uncertainty in the sample locale 

predictions and the variable importance. Uncertainty across the study’s spatial frame is 

generated by predicting for each 3 arc-second cell across the northern Gulf of Mexico 

with each Random Forest in the ensemble. 

As we mixed sample surveys with presence-absence and presence-only data, 

adjustments to the Random Forest algorithm were required. Samples with a Red 

Snapper occurrence were downsampled so that each tree received a random subset of 

the same size for samples with and without occurrences, referred to as balancing in 

machine learning literature. Each Random Forest received a training set containing 90% 

of the data and a test set of 10%, where each subset received a representative sample 

(i.e. the proportion of each interaction class was equal to their proportion in the whole 

dataset). The test set was used to measure model performance. Each Random Forest 

model had 1000 decision trees and 4 covariates were randomly drawn for each node in 

each tree. The number of decision trees to fit and the number covariates to try at each 

node were internally optimized using a single Random Forest model. 

Performance metrics 

Performance of classification models is typically measured by metrics based on 

the number of true positives (TP), the number of true negatives (TN), the number of 

false positives (FP; Type I error), and the number of false negatives (FN; Type II error). 

Classic metrics are sensitivity, specificity, precision or positive predictive value (PPV), 

and negative predictive value (NPV). Plotting the 1-Specificity against the Sensitivity 

creates the Receiver Operator Characteristic Curve (ROC). We calculated the ROC 

metrics using the ROCR (Sing et al., 2005) package in R. The area under the ROC 

curve (AUC) ranges between 0 and 1 with values less than 0.5 performing worse than 

random, 0.5 equaling random, and typically models with AUCs > 0.7 are deemed useful 
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(Phillips, Anderson & Schapire, 2006), and models with AUCs greater than 0.95 

deemed performing exceptionally well. 

 

Threshold selection 

Based on Receiver Operator Characteristic curves, we calculated two thresholds: one 

splitting high and medium probability of presence classes; and a second splitting 

medium and low probability of presence classes. We based the threshold choice on 

previous studies, choosing the maximum sensitivity and specificity metric (Liu, White & 

Newell, 2013). These initial thresholds were used for designing the sampling strata and 

locations only. 

 

Validation 

We conducted a comparison between the FL Red Snapper counts and the 

Random Forest predictions to validate the initial thresholds set by the model. To do 

such, we classified the positive counts of Red Snapper in FL waters using ROV into 

three bins, using kmeans clustering. We assumed that zero counts were assigned to the 

low threshold. We then conducted a Bayesian Ordinal Logistic Regression using the 

arm package in R (Gelman & Su, 2020) to identify the cutoff values of Random Forest 

predictions that corresponded to the clusters. These cutoffs values were back-transformed out of 

logistic space and used to reclassify the gulf-wide predictions of the 

Random Forest model into low, medium, and high classes. The reclassified Random 

Forest model predictions were used for subsequent stratified sampling calculations and 

summations. 

 

RESULTS 

The Random Forest model had high performance with exceptionally high AUC 

values (Figure 11). The predictions from this model resulted into thresholds of 0.23 and 

0.77 and were predicted gulf-wide to design sampling strata (Figure 12). A total of 699 

sampling locations from the FL shelf were used in the validation (Figure 13). The 

validation resulted in the thresholds shifting to 0.923 and 0.989, respectively. 
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TABLE 1 

Summary of datasets used to build the Random Forests model. Code is the dataset 

identifier, nsamp is the number of samples, nRS is the number of Red Snapper, nnoRS 

is the number of samples without Red Snapper, nwRS is the number of samples with 

Red Snapper, propwRS is the proportion of samples with Red Snapper, and data_type 

is the type of dataset records. 
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FIGURE 3 
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FIGURE 5 
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FIGURE 7 
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FIGURE 9 
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FIGURE 11 
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FIGURE 13 

 
 


