Table S72. Cephalopods of the deep Gulf of Mexico that, as adults, are presumed to live at least part of their lives on or near the bottom. (Data from Gallaway, Martin, and Howard 1988; Lipka 1975; and W. Pequegnat 1983.)

Sepioidea

Neorossia sp. Rossia antillensis Rossia bullisi Rossia tortugaensis Semirossia equalis Semirossia tenera

Abralia veranyi

Teuthoidea

Architeuthis dux
Bathothauma lyromma
Cranchia scabra
Grimalditeuthis bonplandi
Grimpoteuthis sp.
Heliocranchia pfefferi
Histioteuthis dofleini
Lycoteuthis springeri

Mastigoteuthis grimaldi Octopoteuthis megaptera Onychoteuthis banksii Pholidoteuthis adami Selenoteuthis scintillans

Octopoda

Allopsis mollis
Benthoctopus januari
Danoctopus schmidti
Eledonella pygmaea
Octopus burryi
Octopus defilippe
Octopus joubini
Opisthoteuthis agassizi
Pteroctopus tetracirrhus
Tetracheledone spinicirrhus
Tremoctopus violaceus

Table S73. Representative shrimps of the family Penaeidae known or presumed to inhabit bottom or near-bottom waters of the deep Gulf of Mexico and their reported depth distributions. (Data from L. Pequegnat 2000).

Species	Depth range (m)	Species	Depth range (m)	
Aristaeomorpha foliacea	464–521	Parapenaeus longirostris	92–732	
Aristaeus antillensis	550–915	Penaeopsis megalops	183–732	
Benthesicymus bartletti	732–2,074	Penaeus duorarum	0–329	
Benthesicymus carinatus	1,000–1,400	Pleoticus robustus	183–915	
Benthesicymus cereus	1,464–3,750	Plesiopenaeus armatus	1,740–3,750	
Benthonectes filipes	1,350	Plesiopenaeus coruscans	2,200	
Funchalia taaningi	350	Plesiopenaeus edwardsianus	621–1,135	
Hadropenaeus affinis	165–570	Sicyonia brevirostris	6–329	
Hadropenaeus modestus	150–550	Sicyonia burkenroadi	33–118	
Hemipenaeus carpenteri	2,074–3,750	Sicyonia dorsalis	5–161	
Hepomadus tener	1,375–3,750	Sicyonia stimpsoni	73–441	
Hymenopenaeus aphoticus	950–3,300	Solenocera atlantidis	6–130	
Hymenopenaeus debilis	300-2,163	Solenocera necopina	60–550	
Mesopenaeus tropicalis	30–915	Solenocera vioscai	35–240	
Metapenaeopsis goodei	18–329			

Table S74. Caridean shrimps known or presumed to inhabit bottom or near-bottom waters of the deep Gulf of Mexico and their reported depth distributions. (From Abele and Martin 1989; L. Pequegnat 2000.)

Species	Depth range (m)	Species	Depth range (m)
Bathypalaemonellidae		Oplophoridae	
Bathypalaemonella serratipalma	732–1,830	Acanthephyra acutifrons	732–1,281
Bathypalaemonella texana	1,464	Acanthephyra armata	732–915
		Acanthephyra eximia	915-1,830
Crangonidae		Acanthephyra microphthalma	2,745-3,750
Metacrangon jacqueti	965	Ephyrina benedicti	275–732
Pontocaris caribbaeus	366–550	Systellaspis affinis	275–732
Pontophilus brevirostris	12–366		
Pontophilus gracilis	353-1,464	Palaemonidae	
Pontophilus talismani	234–373	Periclimenes pandionis	632
Prionocrangon pectinata	613–1,206		
Sabinea tridentata	366–544	Pandalidae	
		Heterocarpus ensifer	220–458
Eugonatonotidae		Heterocarpus laevis	663
Eugonatonotus crassus	183–550	Heterocarpus oryx	732–1,830
		Parapandalus longicauda	55–458
Glyphocrangonidae		Parapandalus willisi	275–458
Glyphocrangon aculeata	732–1,750	Plesionika acanthonotus	458–915
Glyphocrangon altispina	549-1,050	Plesionika edwardsii	183–366
Glyphocrangon haematonotus	183–915	Plesionika ensis	366–732
Glyphocrangon longirostris	1,181-2,697	Plesionika holthuisi	36–900
Glyphocrangon longleyi	275-824	Plesionika longipes	348-403
Glyphocrangon nobilis	700–2,100	Plesionika martia	45–732
Glyphocrangon sculpta	2,100-2,190	Plesionika polyacanthomerus	458–915
Glyphocrangon spinicauda	275–732	Plesionika tenuipes	183–476

Hippolytidae		Pasiphaeidae		
Bythocaris gorei	531–1,460	Pasiphaea merriami	366–1,830	
Bythocaris miserabilis	220-805	Psathyrocaris infirma	458–824	
Bythocaris nana	79–1,175			
		Processidae		
Nematocarcinidae		Processa profunda	367–368	
Nematocarcinus acanthitelsonis	2,660-3,750			
Nematocarcinus cursor	366–939	Psalidopodidae		
Nematocarcinus ensifer	1,647–3,750	Psalidopus barbouri	550–915	
Nematocarcinus rotundus	512–1,830			

Table S75. Representative macrurans known to inhabit bottom waters of the deep Gulf of Mexico and their reported depth distributions.

Species	Depth range (m)	Species	Depth range (m)
Callianassidas		Daluah alas turblans	350–800
Callianassidae		Polycheles typhlops	
Callianassa latispina	200	Polycheles validus	1,300–3,350
Callianassa marginata	200–650	Stereomastis sculpta	500-2,750
		Willemoesia forceps	3,250
Nephropidae			
Acanthacaris caeca	500-900	Scyllaridae	
Nephropsis aculeata	350–1,350	Scyllarus americanus	0-329
Nephropsis agassizi	900-1,600	Scyllarus chacei	16–183
Nephropsis rosacea	500-750	Scyllarus depressus	200
		Scyllarus nearctus	55–183
Polychelidae			
Polycheles crucifer	1,000-1,400		

Table S76. Representative anomurans known to inhabit bottom waters of the deep Gulf of Mexico and their reported depth distributions.

Species	Depth range (m)	Species	Depth range (m)
Chirostylidae		Munidopsis riveroi	1,000
Gastroptychus spinifer	500	Munidopsis robusta	342 - 1,000
Uroptychus nitidus	550 - 1,350	Munidopsis rostrata	2,050 - 2,250
		Munidopsis serratifrons	550 - 663
Diogenidae		Munidopsis sigsbei	479 - 1,600
Cancellus ornatus	shelf – 160	Munidopsis simplex	850 - 1,800
Dardanus insignis	18 - 600	Munidopsis spinoculata	871 - 1,350
Paguristes oxyophthalmus	150 – 700	Munidopsis spinosa	751 - 1,050
Paguristes planatus	600	Munidopsis subspinoculata	800
Paguristes spinipes	134 – 640	Munidopsis sundi	3,300
		Munidopsis tridentata	400 - 800
Galatheidae			
Munida constricta	612 – 627	Lithodidae	
Munida evermanni	668	Lithodes agassizi	900 - 1,350
Munida flinti	200		
Munida forceps	150 – 500	Paguridae	
Munida iris	500	Agaricochirus boletifer	shelf – 150
Munida irrasa	150 – 300	Anisopagurus bartletti	shelf – 150
Munida longipes	150 - 1,135	Catapaguroides microps	1,000 - 1,500
Munida microphthalma	964 - 2,401	Pagurus bullisi	82 – 200
Munida miles	345	Pagurus rotundimanus	300 - 400
Munida sculpta	150	Pylopagurus corallinus	13 – 119
Munida valida	450 - 1,170	Pylopagurus discoidalis	46 - 930
Munidopsis abbreviata	550 - 1,170	Rhodochirus rosaceus	shelf – 150
Munidopsis alaminos	479 – 800	Solenopagurus lineatus	shelf – 150

Munidopsis bahamensis	423 – 663			
Munidopsis bermudezi	3,300	Parapaguridae		
Munidopsis columbiana	3,300	Sympagurus pictus		500
Munidopsis erinaceus	474 – 774	Sympagurus pilimanus	500 -	900
Munidopsis geyeri	3,000			
Munidopsis gulfensis	1,400	Porcellanidae		
Munidopsis impolita	345 - 663	Pachycheles rugimanus	shelf –	145
Munidopsis longimanus	350 - 1.203	Porcellana sigsbeiana	27 –	950
Munidopsis nitida	1,100 - 2,100			
Munidopsis polita	342 - 1,120	Pylochelidae		
Munidopsis ramahtaylorae	342 - 1,120	Pylocheles scutata		400

Table S77. Representative brachyuran crabs known to inhabit bottom waters of the deep Gulf of Mexico and their reported depth distributions.

Species	Depth range (m)	Species	Depth range (m)	
Calappidae		Majidae		
Acanthocarpus alexandri	57 - 400	Collodes leptocheles	124 - 400	
Calappa angusta	15 – 275	Podochela sidneyi	150 - 200	
Osachila tuberosa	73 – 200	Pyromaia arachna	150 - 700	
		Pyromaia cuspidata	27 – 549	
Dorippidae		Rochinia crassa	400 - 750	
Cyclodorippe antennaria	200 - 400	Rochinia umbonata	900 - 950	
Ethusa microphthalma	150 – 732	Stenocionops spinimana	20 - 227	
Ethusina abyssicola	900 - 3,750	Stenocionops spinosissima	48 – 549	
Geryonidae		Palicidae		
Chaceon quinquedens	400 - 2,000	Palicus dentatus	150	
		Palicus gracilis	300 - 600	
Goneplacidae		Palicus obesus	150 - 250	
Bathyplax typhla	450 - 950	Palicus sicus	150 - 400	
Chasmocarcinus cylindricus	100 – 200			
Euphrosynoplax clausa	200 – 250	Parthenopidae		
Goneplax barbata	100 – 300	Parthenope agona	46 - 400	
Thalassoplax angusta	200 – 400	Parthenope pourtalesii	150	
Homolidae		Portunidae		
Homologenus rostratus	1,000 - 1,350	Benthochascon schmitti	183 – 650	
Homolodromidae		Raninidae		
Dicranodromia ovata	400	Lyreidus bairdii	200 - 800	

Homolodromia paradoxa	1,050 - 1	1,250	Ranilia constricta	100 -	350
Leucosiidae			Xanthidae		
Iliacantha subglobosa	27 –	395	Euciatoides agassizi		200
Myropsis quinquespinosa	44 –	250	Tetraxanthus rathbunae	27 –	458

Table S78. Representative bryozoans known to inhabit bottom waters of the deep Gulf of Mexico and their reported depth distributions.

Species	Depth range (m)	Species	Depth range (m)	
Calloporidae		Lekythoporidae		
Retevirgula tubulata	37 – 128	Lekythopora longicollis	55 –	128
Cellariidae		Onychocellidae		
Euginoma cavadieri	366 - 2,161	Floridina parvicella	15 –	117
Chaperiidae		Savignyellidae		
Chaperia patula	51 – 214	Fedora nodosa	40 –	415
Crepidacanthidae		Schizoporellidae		
Crepidacantha poissoni	69 – 128	Arthropoma cecilii	20 -	128
		Cleidochasma contracta	7 –	128
Crisiidae		Cribellopora trichotoma	69 –	128
Crisulipora occidentalis	15 – 128			
		Scrupocellariidae		
Cupuladriidae		Caberea boryi	42 -	128
Cupuladria biporosa	50 - 750			
Discoporella umbellata	83 – 750	Setosellidae		
		Setosella vulnerata	146 –	223
Exochellidae				
Exochella longirostris	128	Smittinidae		
		Parasmittina signata	11 –	128
Farciminariidae		Phoceana acadiana	143 –	275
Nellia oculata	43 - 3,000	Smittoidea reticulata		128

Hincksinidae			Tubuliporidae		
Antropora typica	62 –	306	Idmidronella flexuosa	176 –	275
Setosenella goësi	22 -	359			

Table S79. Representative asteroids known to inhabit bottom waters of the deep Gulf of Mexico and their reported depth distributions.

Species	Depth range (m)	Species	Depth range (m)
Asteriidae		Goniasteridae	
Ampheraster alaminos	183 – 330	Anthenoides piercei	91 – 329
Coronatus briareus	150	Ceramaster grenadensis	200 - 1,438
Sclerasterias contorta	464	Circeaster americanus	485 – 672
		Goniaster tesselatus	37 - 100
Astropectinidae		Litonaster intermedius	2,074 - 2,500
Astropecten alligator	350	Litonaster rotundigranulum	1,203
Astropecten americanus	300 - 1,050	Nymphaster arenatus	351 - 3,300
Astropecten antillensis	1,850	Paragonaster subtilis	3,000 - 3,250
Astropecten cingulatus	18 – 183	Plinthaster dentatus	366 - 2,750
Astropecten comptus	18 – 329	Pseudarchaster grandis	550 - 2,400
Astropecten duplicatus	18 – 200	Rosaster alexandri	150 – 300
Astropecten nitidus	91 – 200	Tosia parva	60 - 1,313
Dytaster insignis	800 - 3,740		
Persephonaster echinulatus	474 – 950	Goniopectinidae	
Plutonaster agassizi	774	Goniopecten demonstrans	600 - 1,050
Plutonaster intermedius	750 - 2,504		
Psilaster cassiope	650 – 900	Luididae	
Psilaster pantagiatus	800 - 950	Luidia barbadensis	150 - 400
Tethyaster grandis	42 – 250	Luidia barimae	98 – 200
		Luidia clathrata	0 - 250
Benthopectinidae		Luidia elegans	183 – 238
Benthopecten simplex	2,000 - 3,300		
Cheiraster echinulatus	150 - 800	Odontasteridae	
Cheiraster enoplus	550 - 700	Odontaster hispidus	342 - 1,050
Cheiraster mirabilis	650 – 950	Odontaster setosus	345 - 842
Pectinaster gracilis	603 - 850		
Pectinaster mixtus	113	Pterasteridae	

			Calyptraster coa		2,150
Brisingidae			Calyptraster personatus		1,725
Brisinga costata	549 –	1,300	Hymenaster anomalus		2,000
Brisingella verticillata		750	Hymenaster modestus	551 -	2,150
Midgardia xandaros	500 -	1,100	Hymenaster rex	2,100 -	2,250
Odina antillensis		366	Pteraster abyssorum		1,400
			Pteraster acicula	1,200 -	1,450
Echinasteridae			Pteraster militaroides		600
Echinaster serpentarius	60 –	247	Pteraster personatus	1,750 -	2,250
Henricia antillarum	366 –	465			
Henricia sexradiata		220	Zoroasteridae		
Verrillaster spinulosus	60 –	121	Doraster constellatus	348 -	1,050
			Mammaster sigsbei		1,000
			Zoroaster fulgens	366 –	2,750

Table S80. Representative echinoids known to inhabit bottom waters of the deep Gulf of Mexico and their reported depth distributions.

Species	Depth range (m)	Species	Depth range (m)
Aeropsidae		Echinothuriidae	
Aceste bellidifera	615 - 3,350	Araeosoma fenestratum	400
		Hygrosoma petersii	2,100 - 2,150
Arbaciidae		Phormosoma placenta	185 - 2,350
Coelopleurus floridanus	75 – 530		
Podocidaris sculpta	400 – 663	Fibulariidae	
		Echinocyamus grandiporus	612 - 2,100
Aspidodiadematidae		Echinocyamus macrostomus	1,064
Aspidodiadema jacobyi	1,064		
Plesiodiadema antillarum	700 - 2,250	Hemiasteridae	
		Hemiaster expergitus	750
Asterostomatidae		Sarsiaster griegi	2,750
Palaeobrissus hilgardi	400		
		Loveniidae	
Brissidae		Echinocardium cordatum	0 – 150
Brissopsis alta	150 – 615	Homolampas fragilis	615 – 700
Brissopsis atlantica	150 – 400		
Brissopsis elongata	200	Schizasteridae	
		Agassizia excentrica	300 – 500
Cidaridae		Hypselaster brachypetalus	900
Cidaris rugosa	663	Hypselaster limicolus	150 – 300
Stylocidaris affinis	150 - 400		
		Temnopleuridae	
Echinidae		Genocidaris maculata	12 - 420
Echinus alexandri	1,050		

Echinus tylodes		1,735	Toxopneustidae		
			Lytechinus euerces	55 -	777
Echinolampadidae					
Conolampas sigsbei	130 -	800			
Echinolampas depressa	150 –	800			

Table S81. Representative ophiuroids known to inhabit bottom waters of the deep Gulf of Mexico and their reported depth distributions.

Species	Depth range (m)	Species	Depth range (m)	
Amphilepidae		Ophiodermatidae		
Amphilepis norvegicus	3,000 - 3,250	Bathypectinura heros	366 - 3,250	
		Bathypectinura lacertosa	600	
Amphiuridae				
Amphioplus daleus	450 - 2,400	Ophioleucidae		
Amphioplus incisus	630 - 1,350	Ophiernus adspersus	423 - 1,350	
Amphioplus tumidus	450	Ophiernus vallinicola	2,074 - 2,400	
Amphitarsus mirabilis	615			
Amphitarsus nike	500	Ophiuridae		
Amphiura otteri	1,350	Amphiophiura sculptilis	618 - 1,440	
Amphiura semiermis	350 – 834	Homalophiura abyssorum	450 - 1,850	
Ophiophragmus filograneus	150	Homalophiura inornata	850 - 2,504	
Ophiostigma isacanthum	150	Ophiolepis agassizi	329 – 850	
		Ophiomusium acuferum	345 – 354	
Ophiacanthidae		Ophiomusium eburneum	346 - 3,250	
Ophiacantha echinulata	612 - 1,203	Ophiomusium monoplax	750	
Ophiacantha valenciennesi	663	Ophiomusium planum	2,750 - 3,750	
Ophioplinthaca dipsacos	900 – 950	Ophiomusium spinigerum	2,100	
		Ophiomusium testudo	850 - 2,857	
Ophiochitonidae		Ophiosphalma armigerum	612 - 2,504	
Ophiochiton grandis	423 - 1,170	Ophiura acervata	329	
		Ophiura falcifera	612 – 812	
		Ophiura lepida	750	

Table S82. Representative holothuroids known to inhabit bottom waters of the deep Gulf of Mexico and their reported depth distributions.

Species	Depth range (m)	Species	Depth range (m)
1	. ,	1	. ,
Cucumariidae		Psychropotidae	
Echinocucumis hispida	618 - 1,500	Benthodytes lingua	860 - 3,250
Sphaerothuria talismani	350 – 625	Benthodytes sanguinolenta	700 - 2,250
		Benthodytes typica	315 - 3,750
Deimatidae		Psychropotes depressa	1,750 - 3,750
Deima valida	914 - 2,780	Psychropotes semperiana	3,300 - 3,740
Holothuriidae		Synallactidae	
Holothuria imperator	200	Amphigymna bahamensis	439 – 663
		Bathyplotes natans	408 – 950
Molpadiidae		Bathyplotes pourtalesi	650
Molpadia barbouri	200 - 2,400	Mesothuria lacteal	447 - 2,100
Molpadia blakei	550 - 3,350	Mesothuria verrilli	699 - 2,750
Molpadia cubana	24 - 1,200	Paroriza prouhoi	1,100 - 2,150
Molpadia musculus	183 - 2,400		
Molpadia oolitica	500 - 3,450	Synaptidae	
		Protankyra abyssicola	750 – 950
		Protankyra brychia	1,464 - 2,450
		Protankyra sluitei	750

Table S83. Representative tunicates of bottom waters of the deep Gulf of Mexico and their reported depth distributions. (After Monniot and Monniot 1987.)

Species	Depth range (m)	Species	Depth range (m)
Polyclinidae		Pyuridae	
Synoicum daucum	624 – 848	Boltenia pilosa	618
Cionidae		Molgulidae	
Araneum sigma	1,386	Minipera papillosa	750 - 1,444
Pseudodiazona abyssa	1,390 - 1,444	Minipera pedunculata	2,853
		Hexacrobylus indicus	847 - 2,853
Styelidae			
Dicarpa simplex	550 - 2,124		
Polycarpa pseudoalbatrossi	748 – 761		
Bathystyelloides enderbyanus	2,400		
Bathystyelloides mexicanus	845 - 1,444		

Table S84. Orders and families of fishes known to inhabit bottom or near-bottom waters of the deep Gulf of Mexico. Groups that normally inhabit the continental shelf and extend onto the continental slope are not included, and some of the less important families are omitted.

Myxiniformes

Myxinidae – hagfishes

Chimaeriformes

Chimaeridae – ratfishes

Lamniformes

Lamnidae – mackerel sharks Scyliorhinidae – cat sharks

Hexanchiformes

Hexanchidae – six- and seven-gill sharks

Squaliformes

Squalidae – dogfish sharks Squatinidae – angel sharks

Rajiformes

Rajidae – skates

Albuliformes

Halosauridae – halosaurs Notacanthidae – notacanthid eels

Anguilliformes

Congridae – conger eels

Nemichthyidae – snipe eels Nettastomatidae – duckbill eels Ophichthidae – snake eels Synaphobranchidae – cut-throat eels

Osmeriformes

Alepocephalidae – smoothheads

Ateleopodiformes

Ateleopodidae – ateleopodids

Aulopiformes

Chlorophthalmidae – greeneyes Ipnopidae – ipnopids Synodontidae – lizardfishes

Gadiformes

Aphyonidae – aphyonids Bythitidae – viviparous brotulids Gadidae – cods Macrouridae – grenadiers Moridae – moras Ophidiidae – cusk-eels

Lophiiformes

Lophiidae – goosefishes

Table S85. Brief sketches of important families of demersal fishes inhabiting bottom waters of the deep Gulf of Mexico. Some less important families mentioned in the text are also included.

Myxinidae. The hagfishes have scaleless, eel-like bodies without paired fins. A single low fin runs along the middorsal and midventral lines. There are no jaws, but a tongue-like structure in the open mouth is equipped with four rows of rasping teeth. Several small barbels are located near the single middorsal nostril and around the mouth. The eyes are rudimentary and not visible at the surface. Five to 16 pairs of gill openings are present along the sides of the body. Mucus pores located around the body produce copious quantities of slime. Hagfishes feed on soft-bodied invertebrates and carrion that falls to the bottom. They are found on the upper and middle continental slopes to a depth of nearly 800 m. Representative genera in the Gulf include *Eptatretus* and *Myxine*.

Chimaeridae. The ratfishes have large pointed heads and bodies tapering to a long ratlike tail. The single nostril is located in the center of the fleshy upper lips. The mouth is subterminal, and the eyes are large. The first dorsal fin is high and preceded by a single sharp spine. The second dorsal is low and longer than the first. The pectoral fins are expanded and winglike. Ratfishes inhabit the upper and middle continental slopes to a depth of about 1,000 m. They feed on invertebrates and small fishes. Within the Gulf there is a single genus, *Hydrolagus*.

Lamnidae. The mackerel sharks were discussed earlier in the present chapter. All members of the family are epipelagic and/or mesopelagic, but the white shark sometimes feeds on or near the bottom and has been recorded from depths of over 1,200 m. All species are carnivorous and feed primarily on squids, crustaceans, fishes, and other marine vertebrates. The single deepwater representative of this group is the genus *Carcharodon*.

Scyliorhinidae. The cat sharks were also taken up earlier in this chapter. Most species are epipelagic and/or mesopelagic, but some have been recorded at depths of over 1,400 m. They consume cephalopods, crustaceans, and fishes and are known to feed occasionally on the bottom. A representative deepwater genus of the Gulf is *Apristurus*.

Hexanchidae. Six-gill and seven-gill sharks have long slender bodies and six or seven gill slits in front of the pectoral fins. The mouth is subterminal and extends back behind the eye. The single dorsal fin is located far back near the base of the tail, and the anal fin is smaller than the dorsal fin. The dorsal lobe of the caudal fin is long and has a subterminal notch, and the ventral lobe is small or absent. These sharks are found to depths of over 1,800 m. Although most are pelagic, some, such as the six-gill shark, are known to feed on bottom-living crustaceans and fishes. Genera in the Gulf include *Hexanchus* and *Notorynchus*.

Squalidae. The dogfish sharks have been described earlier in the present chapter. The various species of this family range from continental shelves to depths of 6,000 m. Although some species are pelagic, many are demersal, where they feed primarily on squids and fishes. Representative genera of the deep Gulf include *Centrophorus*, *Deania*, *Etmopterus*, and *Isistius*.

Squatinidae. The angel sharks have flattened bodies and expanded pectoral and pelvic fins. The mouth is terminal. The eyes and spiracles are on top of the head, but the gill slits are located below. A single species of the genus *Squatina* is present in the Gulf and it lives in benthic waters of the continental slope to a depth of over 1,200 m. Food consists of mollusks, crustaceans, and fishes.

Rajidae. The skates have very flattened and laterally expanded bodies. The snout is often acutely pointed, and the tail may be moderately or very slender. The eyes and spiracles are on top of the head, and the mouth and gill slits are located below. The pectoral fins are positioned on either

side of the tail base. Skates are found on the bottom from the outer shelf to a depth of 3,000 m. They consume a variety of invertebrates and small fishes. Common genera of the deep Gulf include *Acanthobatis*, *Fenestraja*, and *Rajella*.

Halosauridae. The halosaurids are strange eel-like fishes with pointed snouts and long, tapering tails. The mouth is subterminal. The eyes are degenerate and covered with transparent skin. The dorsal fin, which is short and high, is located in advance of the anal fin. The anal fin itself is long and continues to the posterior tip of the tail. The halosaurids live in bottom waters along the lower continental slope to a depth of 2,600 m. They consume a variety of benthic invertebrates (anthozoans, polychaetes, gastropods, bivalves, squids, crustaceans, and echinoderms). Representative genera in the deep Gulf include *Aldrovandia* and *Halosaurus*.

Notacanthidae. The notacanthid eels, like their relatives, the halosaurids, have elongated bodies and tapering tails. The snout may be somewhat pointed, and the mouth is subterminal. The eyes are degenerate and covered with a layer of transparent skin. The dorsal fin consists of separated, spinelike rays (although the last one may have a spine followed by a few short soft rays). The anal fin is long and continues to the tip of the tail. Notacanthids inhabit the continental slope to a depth of about 2,000 m. Their food consists of small invertebrates, such as hydrozoans, sea anemones, polychaetes, copepods, amphipods, and bryozoans. Genera present in the deep Gulf include *Notacanthus* and *Polyacanthonotus*.

Congridae. The conger eels have long, scaleless, eel-like bodies with tapering tails. Both the dorsal and anal fins are confluent with the caudal fin. The snout may be short and blunt or long and slender. The anterior nostrils are located near the tip of the snout and are tubular in shape. The eyes are large. The gill slits are on the sides in advance of the base of the pectoral fins (when these fins are present). Pelvic fins are absent. Conger eels inhabit the bottom and are found on

continental shelves and slopes to a depth of about 1,600 m. They are carnivorous and feed on benthic invertebrates and fishes. Representative deepwater genera include *Bathyuroconger* and *Pseudophichthys*.

Nemichthyidae. The snipe eels have short or quite elongated, scaleless bodies, and the tail may be truncated or long and threadlike. This group is unique in that the upper and lower jaws of females and immature males are elongate, slender, diverging beaks. The jaws of mature males resemble those of other eels. The eyes are large, and the dorsal and anal fins are long and, in most species, confluent with the caudal fin. The pectoral fins are well developed, and the anus is positioned far forward near the pectoral fins. Pelvic fins are absent. Although some species of snipe eels are pelagic, others appear to inhabit bottom or near-bottom waters. They have been collected to depths of around 2,000 m. Representative genera include *Avocetina*, *Labichthys*, and *Nemichthys*.

Nettastomatidae. The duckbill eels have elongate, scaleless bodies with long, narrow snouts and slender tails. The upper jaw projects beyond the lower jaw. The anterior nostril is tubular and located near the tip of the snout. The eyes are well developed. Pectoral fins are sometimes lacking, but the pelvic fins are always absent. The dorsal and anal fins continue to the tail tip. Duckbill eels have been taken on continental shelves and slopes to a depth of over 1,600 m. Representative genera of the deep Gulf include *Nettastoma* and *Venefica*.

Ophichthidae. The snake eels may have rounded or laterally compressed bodies. The snout is short to moderately long. The posterior nostrils are usually situated within the mouth, or they pierce the upper lips. Within the pharynx, the bony rays (gill rakers) of the gill arches form a basketlike structure so that the outside of the throat is often expanded and of greater diameter than the following body. Pectoral fins are present, but pelvic fins are absent. The caudal fin is

generally absent, and the tail terminates in a hardened tip. Many members of this family are common on the continental shelves and upper slopes, but representatives of the genus *Ophichthus* extend down to about 1,400 m.

Synaphobranchidae. The cutthroat eels have short, stout, eel-like bodies with blunt or elongated snouts, large mouths, and well-developed pectoral fins. The anterior nostrils are extended as short tubes located near the fleshy lips. The gill openings are situated at or below the insertions of the pectoral fins. The dorsal, anal, and caudal fins are confluent. Cutthroat eels occur on continental shelves and slopes to depths of over 4,000 m. Genera with representatives in the deep Gulf include *Haptenchelys*, *Ilyophis*, and *Synaphobranchus*.

Alepocephalidae. The smoothheads have been discussed earlier in the present chapter. These fishes are characteristic of the open Gulf, where some species are pelagic, but most appear to be associated with near-bottom waters. They are common below 1,000 m and have been taken from over 5,000 m. Representative benthopelagic genera of the Gulf include *Alepocephalus*, *Bathytroctes*, and *Conocara*.

Ateleopodidae. The ateleopodids or jellynose fishes have large ovoid bodies, tall dorsal fins, and long, tapering tails. The mouth is positioned beneath a protruding snout. The pectoral fins are located near the midline, and the pelvic fins (consisting of a single free ray followed by several shorter rays) are situated below or in advance of the pectoral fins. The long anal fin originates near midbody and runs to the tip of the tail. These are benthic fishes and have been taken from the outer continental shelf to a depth of about 700 m. In the Gulf, they are represented by a single genus, *Ijimaia*.

Chlorophthalmidae. The greeneyes were taken up earlier in the present chapter. Fishes of this group live in close association with the bottom of the outer continental shelf and slope to a depth

of around 1,000 m. They are predatory and consume polychaetes, squids, crustaceans, and fishes. Genera represented in the deep Gulf include *Chlorophthalmus* and *Parasudis*.

Ipnopidae. The ipnopids were discussed earlier in the present chapter. They are generally associated with the bottom, where they extend from about 500 m to 6,000 m. Their known foods are squids, crustaceans, and fishes. In most species, the eyes are greatly reduced, and in one species, *Ipnops murrayi*, they are absent. In some species, the anterior rays of the pectoral fins are very long and filamentous, and in members of the genus *Bathypterois* (the tripod fishes), the anterior rays of the pelvic and anal fins are long and stiffened. These provide support above the bottom and may be used to probe the sediments for food items. Representative genera include *Bathypterois*, *Bathytyphlops*, and *Ipnops*.

Synodontidae. The lizardfishes are elongate, slender fishes with large, oblique mouths that extend back beyond the eyes. A dorsal adipose fin is usually present anterior to the caudal fin. The pectoral fins are inserted midway up the sides of the body, and the pelvic fins are located anterior to the dorsal fin. Most species are closely associated with the bottom habitat. They are common on the continental shelves and upper slopes, but some species are found to depths of about 4,800 m. They feed on crustaceans and fishes. One species of the genus *Bathysaurus* extends from 1,500 m to the deepest parts of the Gulf.

Aphyonidae. The aphyonids have large heads, poorly developed eyes, and somewhat flattened bodies that taper to a point. The dorsal, caudal, and anal fins are confluent. The large mouth may be oblique or horizontal. The fins lack spines. The pectoral fins are located around the midline, and the pelvic fins, when present, are situated on the throat and consist of a single ray. All species live on the bottom or in near-bottom waters. The aphyonids occur on the lower

continental slope and the abyssal plain. Representative genera of the deep Gulf include *Aphyonus*, *Barathronus*, and *Sciadonus*.

Bythitidae. The bythitids, often called "viviparous brotulids," have elongated, tapering bodies. The long dorsal and anal fins may be free or confluent with the small caudal fin. The snout is often blunt, and the fins lack spines. The pectoral fins are positioned at or below the midline of the body, and the pelvic fins, when present, consist of one or a few rays and are set close together below the throat. Bythitids are benthic. They inhabit continental shelves and slopes, and some species extend to depths of nearly 3,000 m. The deep-water genus *Cataetyx* is limited to waters below 1,000 m in the Gulf.

Ophidiidae. The cusk-eels have slender or robust bodies and tapering tails. The dorsal, anal, and caudal fins are confluent. The snout is usually blunt, and the mouth is large, with the upper jaw extending to or beyond the level of the eyes. In some species, a chin barbel is present. Spines sometimes occur on the gill covers. The fins lack spines. The pectoral fins are located at or below the midline of the body, and the pelvic fins, when present, are situated on the throat and contain only one or two filamentous rays. Cusk-eels are benthic or benthopelagic. They are distributed around continental shelves and slopes and have been recorded to depths of around 8,000 m. Representative deepwater genera of the Gulf include *Acanthonus*, *Bassogigas*, and *Porogadus*.

Macrouridae. The grenadiers or rat tails have compact heads and bodies with long, tapering tails. The dorsal, caudal, and anal fins are confluent. The snout may be blunt or sharply pointed. The mouth may be large or small, and a chin barbel is usually present. The eyes are moderate to large. The pectoral fins are narrow and inserted high on the flank. The pelvic fins are inserted on or near the throat and have narrow fin bases. Most species of macrourids are associated with the

bottom, and they extend from the outer continental shelves, across the slopes and abyssal plain, to a depth of around 4,000 m. They feed on a variety of invertebrates and fishes. Representative deepwater genera of the Gulf include *Bathygadus*, *Coryphaenoides*, and *Gadomus*.

Moridae. The morids are spindle-shaped fishes that taper posteriorly. The mouth is large and there may be a chin barbel. The eyes are moderate to large. The fins lack spines. There are two or three dorsal fins, with the first being higher and shorter than the rest. The pectoral fins are moderately long, and the pelvic fins are situated on or near the throat and consist of few rays, some of which may be elongated. The small caudal fin is separated from the dorsal and anal fins. Morids live on or near the sea bottom on the outer continental shelf and slope to a depth of about 2,500 m. Representative genera of the deep Gulf include *Gadella* and *Laemonema*.

Gadidae. The gadids are moderately slender to spindle shaped. There are two dorsal fins and one anal fin, and both are separated from the caudal fin. The mouth is large and may be horizontal to somewhat oblique. Several barbels are often present on the snout, and a chin barbel may be present or absent. The fins lack spines. The first dorsal fin may be short and triangular, or it may consist of a single high ray followed by a number of short fleshy rays. The pectoral fins are located high on the flanks. The pelvic fins are generally inserted anterior to the pectoral fin bases, and they may be short or long and filamentous. Gadids live on the continental shelves and upper slopes to depths of over 600 m. On the continental slopes of the Gulf, they are represented by the genera *Enchelyopus* and *Urophycis*.

Lophiidae. The goosefishes are dorsoventrally flattened and have massive heads with numerous spines and very large mouths with projecting lower jaws. The body is covered with loose, scaleless skin, which on the head, jaws, and body bears numerous fleshy protuberances. The first dorsal fin consists of separated spines, the first of which is an angling device fitted with a

terminal fleshy bait used to attract prey. The gill openings are reduced and extend behind and below the pectoral fins. The pelvic fins are located at or near the throat. Both the pectoral and pelvic fins are wide and brushlike at the tip. All species live on the bottom. In the Gulf, the goosefishes are found on the outer continental shelves and slopes to a depth of over 800 m. Representative genera include *Lophiodes* and *Lophius*.